AT Folk — Resource Management for Distributed Al

Final Scientific Report
https://aifolk.upb.ro

2022-2024
Contents
1 Introduction 4
2 AI Folk Ontology 5
3 AI Folk Interaction Protocol 6
3.1 Names and Identifiers 7
3.2 Protocol Specificationo 8
4 Al Folk Deployment 9
4.1 Entities e 9
4.2 Evaluation of Machine Learning Models 10
5 The AI Folk Methodology 11
6 Autonomous Driving Scenario 14
6.1 Datasets and Models L 14
6.2 Al Folk Ontology Instantiation 14
6.3 Experiments and Results. L 15
6.4 Enhanced experiment design Lo oL 17
7 Disaster Response Scenario 18
7.1 Datasets oL e e 18
7.2 Models o e e 19
7.3 Individual Results 20
8 Conclusion 21
8.1 Project Achievements L 21
8.2 Project Impact e 22
8.3 Future Work e e e 22
A Competency questions for ML models 25
B Elements of the AI Folk Ontology 26
C Python server available operations 28

https://aifolk.upb.ro

Executive summary

Objectives

The main research goal of the AI Folk project was to develop a knowledge model and an interaction
protocol which allow a system formed of multiple actors — human, software, or organizational — to
find, transfer and use machine learning resources, as well as share improvements on machine learning
resources.

The objectives of the project were to:

O1. develop a semantic description for the resources which can be exchanged in a distributed Al
ecosystem, such as individual observations, datasets, and machine learning models.

02. develop a protocol that allows actors in an Al ecosystem to search for resources, to understand
how resources can be used, and to share resources that they have improved as a result of their
own experience.

03. define a methodology which allows the integration of existing datasets and models for other
applications into an AI Folk ecosystem.

04. validate the AI Folk approach through the implementation of prototype applications in two
scenarios: an autonomous driving scenario, and a disaster response scenario

All of these objectives have been achieved.

Results

At the end of the project, the following results have been obtained:

e a domain ontology that describes the properties of and relations between four types of resources:
individual sensor observations from devices; datasets formed of multiple observations within a
specific context (e.g. images of roads in a given area); learning models, together with information
about their input, output, and training data; and observations regarding the experience of using
a model. Three ontology parts were created:

— the core Al Folk ontology, containing general concepts that can be applied in any scenario;

— the autonomous driving ontology, containing an instantiation of concepts in the core ontol-
ogy, as applied to road segmentation models;

— the disaster response ontology, containing an instantiation of concepts in the core ontology,
as applied to flooded area segmentation models;

e a high-level interaction protocol that allows agents in a multi-agent system to communicate with
regard to prediction models and share such models.

e a methodology, complete with a deployment infrastructure, specifying how to integrate core Al
Folk components and how to develop scenario-specific components in order to obtain a complete
AT Folk instantiation.

e validation through proof-of-concept scenarios in the two application areas.

It has been predicted at the beginning of the project that a methodology will be created to create
SPARQL queries in order to search for prediction models appropriate to a given situation. We have
since concluded that using SPARQL queries is both more difficult when instantiating the AI Folk
methodology in a scenario, and it also reduces the range of parameters which the queries can rely
on. Therefore, we have decided to model queries in a scenario-specific manner, adjusting the AT Folk
methodology accordingly.

Impact

The project is expected to have impact on the community of researchers at the intersection of machine
learning and multi-agent systems. It is particularly of interest to researchers and industry experts that,
rather than using large models which deal with a great variety of data and situations, use smaller,
more specialized models, which handle specific situations and narrow distributions of data.

The resources created during the project are available on the project website — https://aifolk.upb.ro.
In terms of publications, there have been three publications disseminating results of this project.

The conference paper presented at the EMAS 2023 Workshop at AAMAS 2023 presented the underlying
model of the infrastructure used for the AI Folk deployment, emphasizing on the formal foundation
allowing the FLASH-MAS multi-agent framework to work with a variety of resources, including machine
learning prediction models. The paper generated very interesting questions and lead to discussions
with leading researchers in the EMAS community.

The journal paper in Sensors, also in 2023, presents a distributed communication protocol — the
Websocket Regions protocol — which can be used in decentralized, distributed deployments such as
the ones envisaged by the Al Folk project, which has been validated using the FLASH-MAS framework,
and which serves as an underlying layer for the AI Folk interaction protocol.

The project was also disseminated at the Management Committee Meeting of COST Action CA19134
— "Distributed Knowledge Graphs” in September 2023 and the final results will be disseminated at
the 2024 management meeting of the action.

The conference paper presented at DCAT 2024 presents the Al Folk approach and methodology, based
mainly on the autonomous driving scenario. It garnered relevant questions regarding the infrastructure
and the methodology.

A project proposal — WAIz: Hypermedia-based agents using foundational models and knowledge ex-
change to create personalized plans — partially based on the results of the AI Folk project, meaning
to apply the AT Folk methodology in a more concrete scenario, intends to use the same approach, but
focused on large language models applied for planning in a smart building scenario.

https://aifolk.upb.ro

1 Introduction

As machine learning (ML) continues to permeate every aspect of daily life, gathering datasets and
training state-of-the-art models becomes more and more the privilege of large technology companies.
Approaches such as federated learning [Li et al., 2020] and edge AI [Wang et al., 2019] propose the
decentralization of learning, such that model training happens on devices which are closer to the
user, using that which resides on those devices. One of the core challenges of federated learning is
heterogeneity of devices and openness of the distributed AT system [Li et al., 2020].

Moreover, withe the advent of Large Language Models (LLMs), two different approaches have become
evident: one using larger LLMs, very costly to train, handling very many context and usages, and
one using smaller, more specialized LLMs, as weak learners [Shen et al., 2024]. In the latter case, the
challenge that arises is choosing which model is more appropriate for each context.

Our research goal was to develop a comprehensive solution, comprised of a knowledge model, an inter-
action protocol, a deployment infrastructure, and an instantiation methodology, that allows a system
formed of multiple actors — human, software, or organizational — to find, use and share improvements
on machine learning resources. Such resources can be datasets, models, or experiences.

This goal involves several challenges, some of which are research-related and some of which are practical,
but all deal mainly with the possibility of finding parts of the solution which are scenario-invariant,
which can be applied, without change, to any application domain.

An important challenge was therefore the modelling of an Al Folk deployment in general, involving
the decision of which components are generic and which are scenario-specific, and which need to be
split into parts. For instance, the ontology for any concrete deployment is made of two segments;, the
AT Folk core ontology, which is generic, and a scenario-specific instantiation of the core concepts that
can be used at runtime to semantically represent knowledge about the models used by agents in the
scenario.

An important practical challenge was the fact that most machine learning (ML) models are imple-
mented using Python libraries, whereas the deployment framework, as well as the libraries for working
with ontologies, are implemented in Java. That meant developing a mechanism for interaction between
the two languages, which is based on a local Python RESTful web server which loads and manages
the ML models, and what we call a driver which assists the components implemented in Java with
accessing the server.

A challenge also related to the ML models was that there is a great deal of variety in how ML models are
evaluated (executed), how input must be transformed in preparation for the model, and how the output
of the model must be processed after the model evaluates. This variety was so great that the solution
was to implement specific pieces of code for each of the models integrated in our implementation, to
deal with each one of these steps — input transformation, model evaluation, and output processing.

In order to have correct information about a model, one needs to have information about the dataset
on which the model was trained, or, in case this is not available, one needs to evaluate the model on
an appropriate dataset. On the dataset, information relevant to the scenario must be gathered. For
instance, for the autonomous driving scenario, for dataset we needed to obtain information such as
weather conditions, number of cars and pedestrians, and so on; and we needed to evaluate models on
the datasets in order to assess their performance.

The chapters that follow give details on the results of the project: the AI Folk ontology, the AI Folk
interaction protocol, the deployment infrastructure, the AI Folk methodology, and the two proof-of-
concept implementations.

Function <}—{ Metric <hasMetric— NetworkEvaluation <]— EvaluationResult

ZP evaluatesUsinglOPipe Algorithm
evaluatesMetwork CA

ObjectiveFunction nexilLayer; DatasetPipe
s\ameLayeri\j

-
hasObjective
Ty

% joinsDataset Weightinitialization TrainingOptimization
/—P Network 27 Layer ¥
] 3
hasNetwork = Dataset
hasWeightinitialization
ANNConfiguration
has TrainingStrategy TrainingSingle
ForwardOnly hasT o
;\. N . timi
TrainingStrategy HiddenLayer InOutLayer asfra ningLptimizer

—wimTrainingSlrategy—* _‘ nextSession
hasTraining Sessionk 2

TrainingSession -

TrainingLoop

s e
(nexl tt:.-p2 hasStep_|
z

> TrainingStep < ——— TrainingSingle

hasTrainingStep

Figure 1: The ANNETT-O ontology architecture proposed by [Klampanos et al., 2019]

2 Al Folk Ontology

In order to develop the AI Folk ontology, we have tried to understand which are the specific challenges
in deployments such as the ones envisioned by the AI Folk project, as well as in autonomous driving
scenarios and most specifically semantic image segmentation tasks, which are among the most challeng-
ing in such scenarios. We have hence developed a list of competency questions which the description
of a machine learning model is supposed to answer. The list of questions is available in Appendix A.

In AT Folk, the ML models we focus on are based on deep neural networks (DNN). The vast architectural
space of DNNs makes the selection of an appropriate architecture for a task challenging. Furthermore,
it enables the development of knowledge bases that support efficient querying, analysis, and comparison
of various neural network architectures and experiments. Ontologies emerge as a promising solution
to describe DNNs in a structured manner, enabling support for querying, analysis and comparisons
of various DNN architectures, as well as their configuration, training methodologies and evaluation
procedures.

FAIRnets [Nguyen and Weller, 2019], for example, is an RDF dataset that stores information about
existing neural networks. Using RDF and OWL, the system enables SPARQL querying for desired
characteristics of DNNs. Users receive search results comprising neural networks meeting the query
criteria, facilitating insights into existing architectures. Additionally, detailed information and further
links about network architectures are provided.

In AT Folk we choose to extend the ANNETT-O ontology [Klampanos et al., 2019] (see Figure 1), which
offers a structured and computationally accessible vocabulary, enabling systematic documentation and
analysis of DNN design and experimentation, with emphasis on aspects of evaluation, topology, and
training.

The purpose of the Al Folk ontology is to introduce the vocabulary required to exchange such messages:
(i) describe the data in terms of its qualities — i.e. provide a data context description, and (ii)
describe the Al models and their evaluation mode, so as to determine if they are suitable for a given
data context.

Describing data in terms of its qualities is by necessity an application domain dependent procedure.
Consequently, the AT Folk ontology is designed in a modular fashion. It contains a core vocabulary

v appliesToDomain (Domain=>Range)
v — containsTask (Domain>Range)
— derivedFrom (Domain>Range)
— derivedTestDatasetFrom (Domain=>Range)

Scenario Model c e a c
J — derivedTrainingDatasetFrom (Domain=Range)

— derivedXValDatasetFrom (Domain>Range)

7
i ModelEvaluation .
;;;:.Charaﬂem v — evaluatedBy (Domain>Range)

— has individual

Dataset EvaluationResul

I—_l t — has subclass
\1\\

R ~

\ hasCharacteristicLabel (Domain>Range)
ﬁ\pphcamnmma Iﬂl v — hasDataContent (Domain>Range)

v — hasDataType (Domain>Range)

v — hasDomain (Domain>Range)

v hasEvaluationResult (Domain>Range)
— haslLabels (Domain=Range)

v — hasModality (Domain=>Range)

v — usesDataset (Domain>Range)

Figure 2: An overview of the main concepts and properties in the AI Folk Core ontology module,
showing how Scenarios described in terms of Tasks relate over an Application Domain with ML Models
and their Evaluation on Datasets from the same domain

defining how concepts such as a Scenario and its TaskCharacterization are related to a Model and its
ModelEvaluation in an ApplicationDomain (see also Figure 2). The core module is then extended by
domain specific vocabulary (such as the segmentation in autonomous driving one) which introduces
concepts and relations that describe qualities of data from key perspectives of the application domain
(see Section 6.2)

Figure 2 gives a general overview of the AI Folk core concepts and relations. The left side of the concept
graph starts from a Scenario that is described in terms of TaskCharacterizations. Tasks are subdivided
from the perspective of a ML algorithm into objectives such as Classification, Regression, Segmentation,
ObjectDetection. Each such task is has a domain to which it applies. The ApplicationDomain is also
one that was addressed by Dataset. The Dataset in turn was used during the evaluation of a Model,
obtaining an FvaluationResult. In this way, scenario tasks (as perceived by the agent) are linked to
models that have been on datasets that have similar content.

Both TaskCharacterization and a Dataset are further described by one or more DataContexts, which
is the concept that gets extended in the domain specific ontology module.

In Section 6.2 we detail how the AI Folk DrivingSemanticSegmentation ontology module addresses
these modeling issues and Section 7 details the instantiation of the ontology on the Disaster Reponse
scenario.

3 Al Folk Interaction Protocol

The purpose of the Al Folk interaction protocol is to ensure that agents can search for models which are
appropriate to a situation and can transfer information about those models. While initially we intended
that search messages contain a SPARQL query that can be applied directly by the local Ontology Driver
in order to identify appropriate models, while developing the experiments it resulted that sometimes

the query would have to be overly complex to create, given the constraints of working with ontologies.
Conversely, it resulted, while implementing situation detection, that situation detection itself required
using some machine learning modes (e.g. for determining the weather, or the average number of
pedestrians in a given time window), hence there is a finite and determined number of features of
the situation that one can handle in a scenario. Given this determination, it resulted that instead
of creating a SPARQL query and let the Ontology driver run it, it is easier, from the point of view
of the developer implementing the scenario, to iterate through model descriptions and check for the
appropriate features.

In conclusion, when an agent needs to search for a model with certain properties, it assembles an RDF
graph describing a model with the needed features. It then serializes this description and sends it, in
a message, to other agents.

3.1 Names and Identifiers

In any multi-entity system [Olaru et al., 2023], there is an important need for being able to identify
things. In AI Folk there are two elements that need to be identifiable across the system: entities
and models. At this point we assume datasets as not changing and, moreover, we consider they are
not stored inside the AI Folk system. Hence, their identification is trivial and can be performed, for
instance, by means of their URI.

Entities need identifiers so that they can be addressed as destinations of messages. Identification
must work in the context of entities which are bound to mobile devices (cars, mobile robots, smart-
phones), and in the context of a changing network topology. Considering our work in developing a
decentralized communication infrastructure [Olaru and Pricope, 2023], it would be easiest to identify
entities using their home server URI, concatenated with an identifier specific to the entity and unique
to the home server. The home server paradigm [Wojciechowski, 2001] enables a distributed approach,
while managing parts of the system in a centralized manner — all entities are assigned to a home server
which knows where the entity is located. If a device is routable (from an Internet Protocol point of
view), then it can serve as a home server for all entities that execute on that device.

Machine learning models also need to be identified. In a deployment in which entities search for,
exchange and share ML models, entities must be able to refer to those models. An additional challenge
comes from the fact that models can be tweaked by individual entities, leading to slight variations in
the model. We propose the following identification mechanism.

Every model is identified by a hash number, providing a unique identifier. Moreover, in order to be
able to differentiate between models which are completely different and models which are only slight
variations of other models, we build a conceptual model forest of hashes, as follows:

e there is one tree of hashes in the forest for each major model existing in the system (including
its variations and tweaks);

e there is a node in the tree of a model for each concrete implementation of the model. In the
tree structure, the node only contains the hash of the model. For a node corresponding to a
specific model, the children of that node correspond to models which are directly derived from
that model. Edges optionally contain summary information about the variation which has been
applied.

Of course, in a large system, there will be no single entity which holds the entire model forest of hashes.
However, individual entities using ML models will find useful to store, for each of the models they use,
the ancestor line and potentially other parts of the hash tree. Model libraries will also store complete
or almost-complete trees for the models they store.

‘ Message type ‘ Message arguments ‘

] DISCOVERY segment |

SEARCH Query Area
EXPERIENCE SEARCH | #modelHash Area Subtree distance
LISTING Query id / #modelHash

] TRANSFER segment \
REQUEST transfer #modelHash [chunk size] [chunk no]
TRANSFER #modelHash chunk size chunk no

’ UPDATE segment ‘

SUBSCRIBE #modelHash Subtree distance

SUBSCRIBE Query

UNSUBSCRIBE #modelHash / Query id

MODEL UPDATE #modelHash #newModelHash update description
REQUEST diff #modelHash #newModelHash

TRANSFER diff #modelHash #newModelHash

Figure 3: Types of interactions in the AI Folk protocol.

3.2 Protocol Specification

In order to allow entities in an AI Folk ecosystem to discover and exchange ML-related resources,
including ML models, we developed the protocol presented in this section. The protocol contains three
segments: discovery, transfer, and update. The protocol is high-level and does not cover issues such
as message routing or conversation control.

Discovery is the process through which an entity can search for (1) ML models adequate for the
situation and needs of the entity and (2) information on the experiences other entities had with using
specific models in specific situation.

An entity will be able to search for a model according to a given query, which is a serialization of an
RDF graph, and in a given area around its location (in terms of physical space or in term of in terms
of network space). An entity will also be able to query the experience with a particular ML model; the
variables are the area to search (in physical or network space), but also the maximum subtree distance
in the tree of models — that is, the entity may search for experience data not only with a specific model,
but also with closely related models. Here, by experience we signify performance metrics related to
the use of models in a particular situation. The destination of the search will reply with a listing of
results.

Transfer is the process through which entities can transfer among each other information about ML
models. Information about a model comprises three main parts:

e the semantic description of the model, as an RDF graph, which can be integrated in the agent’s
local graph;

¢ additional code (in Python) required to run the model, to process its input and its output;

e the model itself (e.g. as a .pth file containing structure data and weights) or an address from
which the model can be downloaded to the local node.

Update is the process through which entities may subscribe for and receive updates on models of
interest or queries of interest. Since some changes to models may be applied incrementally, an entity
is able to request information on how to update its own model in order to obtain another version,
without the need to transfer the entire new version.

4 Al Folk Deployment

During the Al Folk project, we had an important focus on the practical aspect, on the possibility to
actually deploy an Al Folk scenario and deal with all the modelling and technical issues that arise.

4.1 Entities

In order to create an Al Folk development test-bed and to run experiments with the two scenarios,
there was a need to create or use an infrastructure that:

e supported the deployment of various entities and the management of their lifecycle. Among these
entities there are agents, ML models, communication infrastructures, and auxiliary elements such
as running the scenario or working with ontologies and ML models;

e enabled communication among the various entities, especially between agents;

e enabled rapid testing of multi-agent scenarios.

In order to satisfy these requirements without creating a development test-bed from scratch, we have de-
cided to use the FLASH-MAS framework — A Fast, Lightweight Agent Shell Multi-Agent System — devel-
oped at UNSTPB in recent years [Olaru et al., 2019, Olaru et al., 2023]. We have chosen FLASH-MAS
over JADE [Bellifemine et al., 1999], a popular MAS deployment framework, due to its flexibility, sup-
port for dynamically loaded components, the ability to create new, custom, first-class entities, and
good performance [Olaru and Pricope, 2023].

In short, FLASH-MAS, implemented in Java, is able to deploy any persistent entity given it implements
a basic Entity interface. There are a few standard entities in FLASH-MAS, such as nodes, pylons
(embodying communication infrastructures), agents, and shards. Shards are sub-agent entities which
embody specific agent functionality, such as messaging, or monitoring.

We have used the standard FLASH-MAS entities for nodes, agents, and communication infrastructures
(using the decentralized Websocket Regions protocol [Olaru and Pricope, 2023]). We have used stan-
dard agent shards such as messaging and monitoring. In order to deploy the AI Folk experiments, we
needed to build several novel entities, as described in the following paragraphs. A class-interaction
diagram presenting the relations between these entities is presented in Figure 4.

Several drivers had to be created and designed, for interaction between AI Folk agents and their
environment. We call drivers persistent entities that enable the relation with node-local non-agent
entities (different from pylons, which handle the relation with network-wide infrastructures, e.g. for
communication). We have created three drivers for each node in the deployment, to deal with: sce-
nario execution — feeding input data to agents and checking their output; ontology access and
querying (see Section 2); and evaluation of ML models — see Section 4.2.

Several novel agent shards had to be implemented as well, embodying the functionality needed to
implement the AI Folk methodology. The Scenario shard receives input from the Scenario driver
and feeds it to the agent’s event queue. It also intercepts the agent’s actions and sends them to the
Scenario driver for verification and monitoring. The evaluation of ML models on the input, in order to
decide the action, is done by the ML Pipeline Shard, which uses the currently selected ML models.

The actual implementation of the AI Folk methodology, in terms of evaluation and selection of the
appropriate models to use, as well as searching for other, better models to use in the current situation,
is done by the ML Management shard.

In order to correctly model the isolation of scenario-specific code, for instance for the evaluation of the
current situation, we have created a novel type of sub-agent entity — the Scenario Feature, which
encapsulates all the code which is specific to a scenario and which is loaded dynamically based on the

Agent

input ML Pipeline Shard
l mt' ict / Eval Python ML Server
Scenario Driver Scenario Driver Shard ML Management Shard ML Driver i
9 Load / save model ‘: %oad/Save/ Predlct;

Predict / Eval

output end search, receive response
Model description \E ! P
store Detect situatiol earch query |Messaging
< >
\ ~[Queries and model information Other agents

Scenario Feature _
situation detection < | Ontology driver
query management Query building

Figure 4: A diagram presenting the relations between these entities in an AI Folk deployment

quick.Boot -load_order driver;pylon;agent
-package testing net.xqghs.flash.ml src-experiments aifolk.core aifolk.onto
-loader agent:composite
-node nodel
-driver ML:mldriver
-driver Scenario:scen script:script
—-driver Ontology:ont
-pylon WSRegions:Pylonl isServer:<localhost>:8885
-agent A in-context-of:ML:mldriver in-context-of:Scenario:scen
-shard scenario -shard MLPipeline
-shard MLManagement feature:AutoDrive -shard messaging

Figure 5: Deployment configuration for one node in an AI Folk deployment.

deployment configuration.

Thanks to the advantages of FLASH-MAS , deployment is easily specified via an XML file, or via the
command line, in a simple and intuitive manner. For instance, for our test scenario, the command line
for one node is shown in Figure 5.

In this specification, the important highlights are the three drivers, and the specification of one agent
(all agents are specified similarly), which is placed in the context of the three drivers, so it can access
their functionality, and which contains functionality for messaging, for receiving scenario-related events
(the Scenario shard), for using ML models (the ML pipeline shard), and for managing its own ML
models, complete with the specification of the feature to be used — specific to each type of scenario.

4.2 Evaluation of Machine Learning Models

An important challenge in the deployment of AI Folk scenarios was the fact that the FLASH-MAS
framework, as well as the components for the management of RDF graphs, are implemented in Java,
but most machine learning models are implemented in Python, and using dedicated ML libraries such
as PyTorch! and Tensorflow?.

Integrating a Python Flask server for neural network predictions into a Java project can offer significant
advantages in terms of flexibility, scalability, and ease of deployment. Python, with its rich ecosystem
of machine learning libraries like PyTorch and TensorFlow, excels in building and training neural
networks. Flask, a lightweight web framework, provides a seamless way to expose these models through
RESTful APIs. By employing a Python Flask server, we can encapsulate the complex neural network

IPyTorch: pytorch.org
2Tensorflow: www.tensorflow.org

10

https://pytorch.org
https://www.tensorflow.org

PORT: 5000
MODELS:
- name: "MobileNetV2"
path: "models/mobilenetv2.pth"
transform: "datasets.transform.ImageNetTransform"
cuda: false
input_space: RGB
task: "classification"
dataset: "ImageNet"
- name: "ResNet18"
path: "models/resnet18.pth"
cuda: true
input_space: RGB
transform: "datasets.transform.ImageNetTransform"
task: "classification"
dataset: "Custom Dataset"
DATASETS:
- name: "Custom Dataset"
class_names: [’apple’,’atm card’,’cat’,’banana’,’bangle’,’battery’,’bottle’, ’broom’,
’bulb’,’calender’,’camera’]

Figure 6: Example configuration for prediction models and the dataset they were trained on.

logic in a language optimized for machine learning, while Java, renowned for its robust enterprise
solutions, can focus on handling other aspects of the project. This separation of concerns facilitates a
more modular and maintainable codebase.

For the server, we chose to use a YAML configuration file where we define the initial models and
datasets. For each model, we specify its name, the path to the .pth file containing the model weights,
the input type processed by the model, the task for which the model is proposed, the dataset used for
training, and information related to any required preprocessing. Similarly, for each dataset, we specify
its name and the possible labels — this is because many times models do not also specify the output
labels. To better understand the proposed format, we provide an example of a configuration file in
Figure 6. When a new model is added, its metadata is added in the same format.

Following the concepts in the entity-operation model, for each service, the route is defined using the
@app.route decorator with the path (e.g. /predict). It specifies that the route can only handle
HTTP POST requests (methods=[’P0ST’]). The services provided by this server, which can be used
from the Java components via the ML Driver, are the following (detailed in Appendix C):

adding information about a new prediction model (add model)

adding information about a dataset (add dataset)

requesting a prediction from the model, for a given input (predict)

obtaining a list of models (get models)

exporting information of a model so that it can be ready to transfer to another agent (export-model)

5 The AI Folk Methodology

The end goal of our project is to develop a methodology that allows the integration of prediction
model searching and transfer into a multi-agent deployment in any scenario. Since the beginning, we
knew that in deploying the methodology for a given scenario, some parts of the implementation will
remain invariant and some parts will need to be tailored to the necessities of that scenario. Having
analyzed the deployment of the AI Folk approach in both scenarios — autonomous driving and disaster
response — we have identified invariant and scenario-specific elements as presented in Table 1 and we
have constructed the methodology as follows.

11

Java calls

Y

Model entity Model entity Madel entity

[model description] model description] [model description]

Pl

/ |
shared
memory
web service request - response

Model implementation

Pipeline Model entity

Python backend server (Flask)
Python

Model implementation Model implementation

| Pipeline implementation [

Figure 7: A view on the interaction between Java components and Python components in an AI Folk
deployment.

The AI Folk approach applies to agent systems in which participants have to execute their predictive
tasks in environments in which the degree of input variability is too large to be covered by a single
prediction model. Such situations require agents to form experience sharing communities, in which
agents collaborate to exchange appropriate prediction models with each other. The mentioned operat-
ing conditions necessitate the support of a framework that is based on the following design principles
and requirements.

1. Formation of experience sharing communities: refers to giving support to agents to dynamically
identify and communicate with the set of peers that have a relevant experience, in terms of similarity of
task and data descriptions on which a prediction model has been successfully employed (where success
is measured based upon standard or mutually agreed upon task-specific metrics). Thus, the agent
community building principle is driven foremost by an information retrieval concern, as opposed to
one related to logical / physical vicinity or speed of communication.

2. Identification of salient prediction model, task and data characteristics: refers to enabling to agents
to describe what is changing in the task for which they have to use prediction models. Al Folk enlists
the use of semantic web technologies, such as ontologies, to describe task types, general and task-
specific data attributes, DNN model architectures, DNN model evaluation datasets and evaluation
performance. Note that we currently focus on the case where data characteristics that agents should
pay attention to (because they can cause distribution-shifts) are defined based on human domain
knowledge. The methodology can be extended in future work to include approaches where a data-
driven model itself is responsible to highlight and semantically map the data characteristics which it
considers are relevant in the prediction and which have changed.

8. Transfer, loading and running of prediction models: refers to giving support to agents to reference
shared models, transfer model parameters, dynamically configure a model deployment environment and
run the inferences required by their prediction task. AI Folk envisions a system that supports both (i)
cloud-based setups, where agents run predictions in an already configured cloud environment for which
a web-based entry point and access credentials are provided when sharing it with other agents, and
(ii) an edge-based setup that enables local running of prediction models and which requires methods
to efficiently serialize and transfer model parameters and deployment configurations (in a manner
similar to Federated Learning setups). Note that in AI Folk we currently focus on building support
for cloud-based setups.

Using the AI Folk methodology in a given scenario consists of the following steps:

12

Table 1: Invariant and scenario-specific elements in deploying the Al Folk methodology.

| Component | Invariant | Scenario-specific
AT Folk Core concepts related to data contexts, Specific concepts. E.g., for the autonomous
Ontology datasets, functions, models, model driving scenario, the driving scene,
evaluation, task characterizations, environment conditions.
neural networks and optimizers, etc. Instances of specific tasks, datasets and

models that can be used in autonomous
driving scenario

Al Folk The protocol and its integration with A difference appears in the case in which
Interaction the FLASH-MAS framework are invariant. | models are not transferred, but obtained
Protocol through other means (e.g. through functions

in the libraries). In this case the REQUEST and
TRANSFER primitives are no longer necessary.

Queries Queries are serialized and sedn between Queries are built and evaluated in the Feature
agents in a scenario-independent entity depending on how the parameters in
manner. each scenario are evaluated and compared.

Frasa-mMAs | Developed entities are Situation recognition code is scenario-specific

entities for scenario-invariant. and integrated in the Feature scenario-specific

AT Folk entity.

ML Python | The implementation of the server is The libraries and the drivers of each

server invariant, but the libraries that must be | individual model are scenario specific.

installed on the host machine and which
the server imports are scenario-specific.

Code for The code is specific to model and to the given

situation scenario, as they evaluate scenario-specific

recognition parameters, and is integrated in the Feature
entity.

1. for each prediction model, create instances in the ontology, describing the model and the datasets
on which it was trained; if necessary, additional concepts and relations can be added in the

methodology;

2. implement code that evaluates specific parameters on input data and on used datasets, such
that it can be used to identify if the current situation — the current distribution of input data —

sufficiently matches the distribution in the dataset on which the model was trained on;

3. implement code for input transformation, evaluation, output processing, and library import, for

each model in the scenario;

4. decide on the appropriate manner of transferring models between agents, depending on model

size and network capabilities;

5. integrate in agents decision code for selection of the models, depending on scenario-specific

parameters for models;
6. deploy agents according to the scenario requirements.

While the list of items to cover may seem long, we posit that applying the AI Folk approach and
using the AI Folk infrastructure greatly reduces the time taken to deploy a MAS which is able to
exchange information on prediction models, since all the scenario-invariant code and structures are
already implemented and appropriately modularized. What is left to do are, in fact, steps that would
be necessary anyway.

The code for the various AI Folk experiments is open-source, currently in the FLASH-MAS Github
repository?, in the various aifolk branches.

In the following, we will show how the AI Folk methodology was applied to two different scenarios —
one in the field of autonomous driving and one in the field of disaster response.

3FLASH-MAS Github repository: https://github.com/andreiolaru-ro/FLASH-MAS

13

https://github.com/andreiolaru-ro/FLASH-MAS

Table 2: Semantic segmentation datasets

Name ADE20k Cityscapes Pascal VOC Stanford CamVid

created 2016 2016 2012 2017 2008

domain general driving general indoor driving

tasks object detection, detection, classification, detection, object detection,
semantic segmentation detection, segmentation, semantic segmen-
segmentation segmentation depth tation

no. classes 150 30 20 24 32

illumination generally day daytime generally day generally day daytime

weather generally sunny good/ medium generally sunny indoor/ artificial mostly generally

weather light sunny

Name KITTI BDD100k Vistas SUN Synthia

created 2013 2020 2017 2017 2016

domain driving driving driving mostly indoor virtual city

tasks multiple tasks detection, detection, detection, semantic segmen-
(detection segmentation segmentation segmentation, tation, detection
segmentation etc) depth

no. classes 11 19 124 37 13

illumination daytime day, dusk, night various day time generally artificial | daytime

light/ day
weather generally sunny sunny, rain, various day times not applicable sunny, overcast
overcast, snow

6 Autonomous Driving Scenario

The objective of implementing a proof-of-concept scenario was to validate the steps needed to apply
the AI Folk methodology and to verify the mechanism through which prediction models are validated,
queried, exchanged, and switched.

6.1 Datasets and Models

For the autonomous driving scenario, we have showcased several datasets and models related to the
task of road segmentation in RGB images:

e Datasets: ADE20k [Zhou et al., 2017], Cityscapes [Cordts et al., 2016], Pascal VOC
[Everingham et al., 2010], Stanford [Armeni et al., 2017], CamVid [Brostow et al., 2009], KITTI
[Geiger et al., 2013], BDD100k [Yu et al., 2020], Vistas [Neuhold et al., 2017] as well as Sun
RGB-D [Xiao et al., 2010] and Synthia [Ros et al., 2016];

e Models: DeepLabv3 [Yurtkulu et al., 2019] and YoloV8 [Jocher et al., 2023], which are state-of-
the art segmentation models.

The most important information regarding the datasets can be found in table 2. Besides the most
relevant properties described in the tables, each dataset was evaluated according to a number of
questions regarding the average number of cars or pedestrians per image, average percentage for the
cars or the pedestrians in an image, the percentage of the weather conditions and the illumination
conditions and also considering the number of different intersections in an image. These questions
could be further used in order to evaluate the benefit of using one dataset against another.

6.2 Al Folk Ontology Instantiation

Remember from Section 2 that the AI Folk ontology is developed in a modular way, with the core
vocabulary being extended by a domain specific one. In the driving scene segmentation scenario for
autonomous driving a vocabulary to describe a DataContext specific to such an application domain is

14

v — has individual

5

DataContext
- v — has subclass

v/ =— hasEnvironmentCondition

* @ DrivingSceneCon . .
v/ =— hasEnvironmentCondition |

Ry v — hasSceneCategory

s

*\@ DrivingSceneCat *'@ EnvironmentCond v hasSceneCategory (Domait
egory ition

/

* @ llluminationCon * @ WeatherConditio
dition n

Figure 8: The concepts that characterize a DrivingSceneContext in the Segmentation for Autonomous
Driving application domain

defined.

Figure 8 shows how the DataContext concept from the core Al Folk ontology is extended by a Driv-
ingSceneContext specific one. The driving scene context is characterized by an environment condition
(which can refer to the illumination condition or to the weather condition) and a driving scene category
(e.g. a city, rural, highway or parking area).

Furthermore, the competency question based ontology development methodology explained in Section
2, gives rise to instances of the DrivingSceneContext which have DataProperties as exemplified in
Figure 9.

In Figure 9 it is important to note the extensive set of data property assertions which were identified
through the competency question methodology and which are deemed likely to influence the perfor-
mance of a segmentation model. Specifically, the data properties describe of some key situations and
objects that are likely to be encountered in an autonomous driving scenario. They relate to aspects
such as:

e The minimum, average and maximum number of pedestrians and other traffic participants

e The minimum, average and maximum number of cross or T-shaped intersections

e The average size ratio between a pedestrian or traffic participant and the whole image resolution
(i.e. how large do pedestrians or traffic participants appear in an image)

The values to the properties are obtained using approaches as those described in Section 6.3. Depending
on the values of these properties an agent can determine whether the current ML-based decision
making model that it is currently using is still appropriate for the data context it is perceiving from
its environment. If the model is no longer suitable from the semantic perspective described by the
ontology, the agent will use the messaging protocol described in Section 3 (see also Figure 10).

6.3 Experiments and Results

Together with implementing the elements of the AI Folk project we have also developed experiments
testing essential functionality in the project. The following functionality was tested:

e interaction between agents by means of the Al Folk protocol.
e functionality of the Ontology Driver for storing model descriptions and building the description
of searched models.

15

‘l

“ @ DrivingSceneCon
text

cityscapes_test_daylight ctx ' cityscapes_test . dr’\mng context driving_context_node2_dusk

Object property assertions: _daylight_ctx _node2_dusk Object praperty assertions:
cityscapes_test_daylight ctx hasEnvironmentCondition driving_centext node2 dusk hasSceneCategory ResidentialBlocksParking
daylight_light_cond_cityscapes driving_context nede2_dusk hasEnvironmentCondition dusk light_cend_node2
cityscapes_test_daylight ctx hasSceneCategory UrbanHighRise I \ driving_context node2_dusk hasEnvironmentCondition
cityscapes_test_daylight_ctx hasEnvironmentCondition : \ overcast_weather_cond_node2_parking_100
sunny_weather_cond_cityscapes I \ Data property assertions:
cityscapes_test_daylight ctx hasEnvirsnmentCondition [\ driving_context node2_dusk hasMinNumTrafficParticipants 24
overcast_weather_cond_cityscapes [| \ driving_context node2_dusk hasAbsentLaneMarkingsPercentage 0

Data property assertions: | 1 driving_context node2_dusk hasavgNumTintersections 15
cityscapes_test_daylight ctx hasMaxNumTintersections 15 | \ driving_context_node2_dusk hasMaxNumTintersections 20
cityscapes_test_daylight ctx hasAbsentLaneMarkingsPercentage 0 / \ driving_context_node? _dusk hasMiniumPedestrians 10
cityscapes_test_daylight ctx hasiughumCrossintersections 12 [\ driving_context_node?_dusk hasRoadSegme ntatisnMas kRatio 0,39

cityscapes_test_daylight ctx hasParkingLotPercentage O driving_context node2_dusk hasAvgNumCrossintersections 0
cityscapes_test_daylight ctx hasMinNumTrafficParticipants 10 \ driving_context node2_dusk hasAvgNumPedestrians 70
cityscapes_test_daylight ctx hasTrafficParticipantSegmentationMaskRa tio [\ driving_context node2 dusk hasMinNumTintersections 10

e | driving_context_node2_dusk hasMaxNumPedestrians 200

| \ driving_context_node? _duck hasMaxNumCroesintersections 0

| | \ driving_context_node?_dusk hasTrafficParticipantSegmentationMaskRatio 0.33

cityscapes_test_daylight ctx hasMaxNumPedestrians 215 | ‘ A driving_context nede2_dusk hasPedestriansegmentaticniMaskRatio 0.28

cityscapes_test_daylight ctx hasMaxNumCross ntersections 28
cityscapes_test_daylight ctx hasMinNumCrossintersections O
cityscapes_test_daylight ctx hasPedestrianSeg mentationMaskRatio 0.15
cityscapes_test_daylight ctx hasAvgNumTIntersections 12

| driving_context_node2_dusk hasMinNumCrossintersections 0
;i d i o
cityscapes_test_daylight ctx hasMaxNumTrafficParticipants 200 7 g driving_context_node2_dusk hasParkingLotPercentage 70

cltyscapes_test_daylight ctx hasMinNumPedestrlans 5 | 1 driving rontext node? dusk hasavgNumTrafficParticipants 28
cityscapes,_test_daylight ctx hashvgNumPedestrians 73

cityscapes_test_daylight ctx hasAvgNumTrafficParticipants 105 | ‘
cityscapes_test_daylight ctx hasMinNumTInte rsections O |

cltyscapes test daylight ctx hasRoadSegmentationMaskRatio 0.25

driving_context_node2_dusk hasMaxNumTrafficParticipants 30

Figure 9: View of instances of the DrivingSceneContext concept. The cityscapes_test_daylight_ctz
individual identifies a data context from the Cityscapes dataset, while the driving_context_node2_dusk
identifies an individual representing a data context from the scene encountered by an agent during
runtime.

ability of agents to use the ML Pipeline in order to obtain output from the received input
ability of agents to decide which model is more appropriate for a given situation.

e ability of agents to recognize situation in terms of a given set of parameters (e.g. weather, number
of pedestrians).

e ability to select the model to use in the ML Pipeline at runtime.

The concrete scenario that was researched was the changing of the currently used prediction model for
segmentation, based on the appropriateness of the model in the context of a large number of pedestrians
close to the autonomous vehicle. We have made this choice based on the comparison between the
average percentage taken by the pedestrians in the images on which the model was trained.

Given our observations — presented in Figure 11, one can see that, in the case where more pedestrians
appear in the scene, YOLO detects more pedestrians in both datasets, so it is more adequate for use
in this case.

The tested scenario was the following: agent A is currently using the Deeplab model for segmentation.
At a certain point, the number of pedestrians identified in a recent window of 5 images becomes
considerably greater than the average of pedestrians in the dataset on which the model was trained.
In this case, agent A looks for another model to use, if any is available. It will ask agents B and C for
appropriate models. Agent B recommends the use of YOLO, which is more appropriate for the case
of more pedestrians. Agent A downloads the model and switches to using it, at least for the period
in which the number of pedestrians is high. A detailed view of the interaction between agents, drivers
and sub-agent components is presented in Figure 10.

16

| Agent A | | Agent B I

Scenario Scenario Agent o . Python server Ontology Messaging Messaging Ontology I
Driver shard event queue ML Pipeline ML Management ML Driver (local) driver AgentA | | Agent B ML Management iy
/ AutoDrive feature
\)_’
| . input | | I
input
| evaluate| ognize situation | | I
situation|
< &
! I« < T |
é—/‘/ post response
| check | | |
response
11 P checkin 1 I
evaluate <& z._.ontolo 9 !
situation puild descriptign query earch locglly for better model
! 2 hlocgye N !
| send Search message|with query | I
3
T ; > >

&

LIl > :
=]
I | T - |
| transfer and register model

—>

| | | load model on server | | I

—> [|

Figure 10: Interaction diagram between the various components in the implementation, when an input
is received, and when the situation requires a more adequate model.

4.8 13010 |
4.6 - N
4.4 4 20 .
4.2 .
T T 10 - T T =
ADE20k Cityscapes ADE20k Cityscapes
Pedestrian percentage Car percentage

Figure 11: Comparison of average surface percentage of pedestrians and cars identified by YOLO (in
red) and Deeplab (in blue) in the ADE20k and Cityscapes datasets.

6.4 Enhanced experiment design

To apply the methodology presented in Section 5 we design an experimentation protocol, describing
the application conditions, the experiment steps and the evaluation method.

The AI Folk approach is highly relevant in situations where in the environment of an agent a data
distribution shift is expected to occur sufficiently often. Our reference scenario of semantic segmenta-
tion in autonomous driving, implying a large mobility of the self-driving agent and the possibility to
experience significant changes of driving scenes, is a good example of this application condition. To
simulate such conditions from existing datasets, the following steps are followed.

First, a domain of application (e.g. autonomous driving) and a main task (e.g. drivable road seg-
mentation) are specified. For the main task, attributes which can influence it are identified (e.g.
min/average/max number of pedestrians encountered over a recent time window). This leads to an
instance of the core Al Folk ontology expressing the data characteristics which are deemed to influence
an ML algorithm by existing human domain knowledge.

Second, for the identified data attributes, a set of domain-knowledge informed change conditions are
defined, whose objective it is to determine whether there is a mismatch between the characteristics of

17

the data on which the currently employed ML model (which is solving the main task) was trained and
the characteristics of the data from the currently experienced scenario (e.g. the minimum number of
pedestrians detected over frames collected for the past minute is higher than the maximum number of
pedestrians detected on any frame of the training set for the currently used segmentation model).

A detected mismatch signals the need to search for a replacement model, obtained from the experience
of other agents in the community (see Section 5). Step three involves setting filtering criteria for
searched models. New models need to have been trained on data that has a suitable similarity with
respect to the characteristics of the attribute that caused the original mismatch. The filter is set up
as a domain-knowledge informed reasoning rule that looks at the suitability of the data characteristics
(e.g. the difference in average number of pedestrians is below a threshold), as well as the performance
of the model on the main task (e.g. the pixel-wise accuracy for the segmentation of the drivable road
class is above 95%).

The next step involves simulating the condition mismatch using one or more existing dataset(s) (e.g.
Cityscapes or KITTI-360 for our segmentation task). A ML model (e.g. a DeepLab-v3 model) is
finetuned on the main task on splits of data from a first selected dataset, which correspond to mis-
matching conditions on the identified attribute (e.g. number of pedestrians). A second ML model
(e.g. YOLOWS) is finetuned on the same main task on a second dataset, on a split of data respecting
the characteristics of the identified data attribute. Variation can be created in this case, by creating
dataset splits that correspond to different characteristics of the selected data attribute (e.g. splits of
data corresponding to different average pedestrian detection per 100 frames). Each finetuned model
is given to an agent in the modeled experience sharing communities. Each agent has an evaluation
holdout dataset.

To evaluate the experiment, agents run the mismatch identification rules and the corresponding search
for a replacement model from the experience of other agents. The agent receives the most appropriate
replacement model, based on the infrastructure and interactions described in Section 3. The current
model and the replacement model are evaluated on the evaluation holdout dataset and if the percentage
difference in the evaluation metric for the performance on the main task (e.g. pixel-wise accuracy /
Dice-score for drivable road segmentation) shows, for all agents, a net increase in performance on the
main task, then this constitutes an indication that reasoning on domain knowledge informed mismatch
conditions for key data characteristics is a key proxy for anticipating performance improvement if a
ML model were to be retrained on the current distribution shift. The main advantage of the AI Folk
methodology is that, under the assumption of high data distribution shifts for high mobility of agents
in their environment, reasoning over similar experiences in terms of domain-knowledge informed data
characteristics is faster and more convenient than retraining or updating of the local ML model (as is
typical in a federated learning setup).

7 Disaster Response Scenario

The disaster response scenario was constructed following the same structure as the autonomous driving
scenario. The objective of having a second scenario was to show that, indeed, it is only necessary to
change the scenario-specific parts of the deployment and the other components remain invariant. The
validation was successful.

7.1 Datasets

FloodNet [BinaLab, 2021] is a dataset that provides high-resolution unmanned aircraft system imagery
and detailed annotations regarding the damages. The data were collected using an unmanned aircraft
system after Hurricane Harvey. The entire dataset consists of 2343 images that were divided into

18

training (about 60% of the dataset), validation (around 20% of the dataset), and test (about 20%).
The entire dataset is split into two tracks. The first track was for Semi-supervised Classification and
Semantic Segmentation and contains 400 images and masks for training and 1050 unlabeled images.
The second track was for Visual Question Answering and has 1450 images and a total of 4511 image-
question pairs.

AIDER (Aerial Image Dataset for Emergency Response applications) [Kyrkou, 2020] is a dataset that
was created manually by collecting images for four types of natural disasters Fire/Smoke, Flood,
Collapsed Buildings and Traffic Accidents. This dataset also contains a class for the “Normal” case.
The images from the dataset were gathered through more online sources such as Google images, Bing
images, YouTube, and other websites. The dataset contains 500 images for each disaster mentioned
earlier and also 4000 images for the “Normal” case .

CrisisMMD: Multimodal Crisis Dataset [CrisisNLP, nown| describes a dataset that contains several
thousands of images collected from Twitter during seven major natural disasters such as floods, wild-
fires, earthquakes, and hurricanes. The dataset includes three labels: “Informative”, “Not informa-
tive”, “Don’t know or can’t judge”.

Flood Amateur Video for Semantic Segmentation Dataset [Naili, 2023] comprises images and videos
from the social media network Instagram, captured during the flood in the city of Parepare, South
Sulawesi Province. The dataset contains 6 labels for object classifications based on color: floods (blue
light), buildings (red), plants (green), people (sage), vehicles (orange), and sky (dark blue). Tt is
suitable for object recognition tasks using the semantic segmentation method.

xView [xViewOrg , 2018] presents one of the largest publicly available datasets of satellite imagery,
containing images from complex scenes from different natural disaster situations, annotated using
bounding boxes. The dataset includes multiple examples, with a total of 60 classes, such as damaged
buildings, huts/tents, stadiums, fixed-wing aircraft, flooded areas, and more. xView also comes with
a pretrained model that uses the TensorFlow object detection API .

Flood area segmentation [Faizal, 2023] describes a dataset containing 290 images of flooded areas and
corresponding mask images that highlight the water regions. The masks for the images were created
using Label Studio, which is an open-source data labeling software. The dataset includes a folder for
the images, one for the masks, and a .CSV file that maps the image name with its mask.

Roadway flooding image dataset [Shahane, 2021] describes a dataset containing 441 annotated roadway
flood images from coastal areas that experience frequent flooding due to storm surge, heavy rain, or
sea level rise. The dataset includes two folders: one for the images and one for the masks.

7.2 Models

There are several already existing pretrained models and pipelines for training models such as:

xView2 [xViewOrg , 2018] with the main goal to provide quick and accurate information in case of a
disaster. Before the search and rescue teams can go in the affected area they need to know the location
and severity of the damage. This machine learning algorithm focuses on automating the process of
assessing damage after a natural disaster. The xView organization started the project as a challenge
for the community and they also released one of the largest datasets containing satellite imagery for
natural disasters. This model was also used for disaster logistics and rescue missions on the ground in
Turkey in 2023. For this algorithm UAVs imagery can be used in order to do a damage assessment on
affected buildings because the drone imagery can provide higher resolution.

Semi-Supervised Classification and Segmentation on High Resolution Aerial Images [Khose, 2021] de-
scribes a pipeline containing two scripts: one for training an image classification model and one for

19

model flocd seg
mentation

_— v — appliesToDomain

v — containsTask

£
model_flood_seg Y B - Sp———
mentation_eval 1 ModelEvaluation y

v — has individual

= Z\;)louemreacnnl Ery Qﬁt“:.;.f;“*“gm - v — has subclass

v — hasDataContext

. & rural flood sce
- nario —
T * ¢ SearchAndRescue
|

ation

* @ SemanticSegment
entation task 2

flood area_segm I

Py N
v hasDomain

4 context_rural ¢ __ [* ¢ crop ficod o | % context dataset _ "
rop_flood _fural_flood v — hasEnvironmentCondition

|
Y
|

7 7 sesDataset
context 2 ance_2

v — hasSceneCategory

I .‘ I I— I <‘I

Figure 12: Concepts and relations in the ontology for the disaster response scenario

Training Accuracy Training Accuracy

°
%

0775

0750

°
H

0725

°

0.700

Recuracy
°
s

g
£ 0675

e

< 0650

0625

o
S

0.600

o

0575

Epochs.

(a) (b)

Figure 13: Training accuracy for the Keras model (a) and for the UNet model (b).

training an image segmentation model made for the FloodNet challenge.

Aerial Image Semantic Segmentation [Ullah, 2023] describes a pipeline for fine-tuning a PyTorch pre-
trained model InceptionV4 designed for image segmentation.

Aerial view segmentation [Ghinassi, 2022] describes a pipeline designed to train a U-Net model, with
a ResNet50 backbone, for image segmentation.

Semantic Segmentation [Ruthvik, Sai Mondreti , 2024] describes a pipeline designed to train a U-Net
model, with a ResNet50 backbone, for image segmentation.

Water Detection [Corredor, 2024] describes a pipeline for training a Keras model for flooded areas
image segmentation.

7.3 Individual Results

UNet Model Keras Model
Flood Area Segmentation 0.0114 0.4291
Roadway Flooding Image 0.2937 0.5200

Table 3: Average IoU scores for UNet and Keras models

Figure 12 shows how the DataContext concept from the core Al Folk ontology is extended by a
DisasterSceneContext specific one. For this scenario, we have emphasised the type of area where the
flood takes place — in a crop or in a rural area.

For the project two models for image segmentation were trained using Semantic Segmentation and

20

Predicted Mask

Original Image Original Mask

Figure 14: Mask Prediction of Keras model

Crourd trsh Uhiet ReskeotS0 | 10U Scomm 0.019

Figure 15: Mask prediction of UNet model

Water Detection pipelines, on the Flood Area Segmentation dataset.

Training results are presented in Figure 13. For both models, the training accuracy has increased,
indicating that the models were trained properly. For validation, a split from the Flood Area Segmen-
tation (43 images) and Roadway Flooding Image (67 images) datasets were used. To evaluate and
compare the performance of each model for each image, an IoU score was calculated, and at the end,
the average of IoU scores was calculated.

After comparing the results of the two models it is clear that the Keras models is more suitable for
the task of detecting flooded areas then UNet with ResNet-50 backbone model. This happens because
the Keras model is a custom model, tuned for detecting flooded areas, while the UNet with ResNet-50
backbone model is a general model used for image segmentation. The performance of the Keras model
can also be higher because the images received as input are converted to grayscale and this can be more
suitable for the task since converting to grayscale help to delimit the flooded area from the non-flooded
one.

The validation scenario was similar to the autonomous driving scenario. Reaching an area with crop
floods, a drone detects that the type of area has changed (there are a lower number of buildings in a
crop than in a rural area) and finds a model more suitable for this type of segmentation.

8 Conclusion

In a world in which a large variety of machine learning prediction models exist for the same task, in
intelligent software agent must be able to choose among the alternatives and must be able to interact
with other agents and exchange information on the available models. The AI Folk projects has made
several steps towards achieving this goal.

8.1 Project Achievements

The AI Folk project has made the following contributions:

e development of an approach for the management of ML prediction models in a community of
software agents, independent of the concrete application domain;

21

e development and deployment of a software infrastructure, featuring a modular approach, clearly
separating scenario-specific elements from scenario-independent components;

e specification of an interaction protocol to be used by a community of agents exchanging infor-
mation about prediction models;

e development of a core ontology describing datasets and prediction models;

e development of the scenario-specific elements for two different application domains;

e development of a methodology for the application of the AI Folk approach to any application
scenario.

8.2 Project Impact

The resources developed during the project are open-source and available online.

Three publications currently bear the project acknowledgement. a conference paper presented at the
EMAS 2023 Workshop at AAMAS 2023 presented the underlying model of the infrastructure used for
the AI Folk deployment, emphasizing on the formal foundation allowing the FLASH-MAS multi-agent
framework to work with a variety of resources, including machine learning prediction model; a journal
paper in Sensors, also in 2023, presents a distributed communication protocol — the Websocket Regions
protocol — which can be used in decentralized, distributed deployments such as the ones envisaged by
the AI Folk project and which serves as an underlying layer for the AI Folk interaction protocol;
a conference paper presented at DCAI 2024 presents the AI Folk approach and methodology, based
mainly on the autonomous driving scenario. It garnered relevant questions regarding the infrastructure
and the methodology.

8.3 Future Work

There are two main directions for future development. One is further, more complex experimentation
with AI Folk-based setups, as described in Section 6. This will give more complete results and will
allow the testing of performance and the comparison between using smaller, more specialized models,
and using larger, more capable, but more costly, models.

The second area of future development is the use of the Al Folk approach in novel types of scenarios,
dealing with other types of machine learning resources. A submitted project proposal — “WAlz -
Hypermedia-based agents using foundational models and knowledge exchange to create personalized
plans” — posits that the AT Folk approach could be used to select among LLM prompt sets for planning
in an energy-efficient smart building.

References
[Armeni et al., 2017] Armeni, I., Sax, A., Zamir, A. R., and Savarese, S. (2017). Joint 2D-3D-Semantic
Data for Indoor Scene Understanding. ArXiv e-prints.

[Bellifemine et al., 1999] Bellifemine, F., Poggi, A., and Rimassa, G. (1999). JADE - a FIPA-compliant
agent framework. In Proceedings of PAAM, volume 99, pages 97-108. Citeseer.

[BinaLab, 2021] BinaLab (2021). FloodNet Challenge EARTHVISION2021. https://github.com/
BinaLab/FloodNet-Challenge-EARTHVISION2021.

[Brostow et al., 2009] Brostow, G. J., Fauqueur, J., and Cipolla, R. (2009). Semantic object classes
in video: A high-definition ground truth database. Pattern Recognition Letters, 30(2):88-97.

22

https://github.com/BinaLab/FloodNet-Challenge-EARTHVISION2021
https://github.com/BinaLab/FloodNet-Challenge-EARTHVISION2021

[Cordts et al., 2016] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R.,
Franke, U., Roth, S., and Schiele, B. (2016). The cityscapes dataset for semantic urban scene

understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3213-3223.

Corredor, 2024 Corredor, C. (2024). Water Detection. https://www.kaggle.com/code/
1% gg
carloscorredor24/water-detection/notebook.

[CrisisNLP, nown| CrisisNLP (Unknown). CrisisMMD: Multimodal Crisis Dataset. https://
crisisnlp.qcri.org/crisismmd.html.

[Everingham et al., 2010] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman,
A. (2010). The pascal visual object classes (voc) challenge. International journal of computer vision,
88:303-338.

[Faizal, 2023] Faizal, K. (2023). Flood area segmentation. https://www.kaggle.com/datasets/
faizalkarim/flood-area-segmentation.

[Geiger et al., 2013] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vision meets robotics:
The kitti dataset. The International Journal of Robotics Research, 32(11):1231-1237.

[Ghinassi, 2022] Ghinassi, A. (2022). Aerial view segmentation. https://github.com/santurini/
aerial-view-segmentation.

[Jocher et al., 2023] Jocher, G., Chaurasia, A., and Qiu, J. (2023). YOLO by Ultralytics.

[Khose, 2021] Khose, S. (2021). Semi-Supervised Classification and Segmentation on High Resolution
Aerial Images. https://github.com/sahilkhose/FloodNet.

[Klampanos et al., 2019] Klampanos, I. A., Davvetas, A., Koukourikos, A., and Karkaletsis, V. (2019).
Annett-o: an ontology for describing artificial neural network evaluation, topology and training.
International Journal of Metadata, Semantics and Ontologies, 13(3):179-190.

[Kyrkou, 2020] Kyrkou, C. (2020). AIDER (Aerial Image Dataset for Emergency Response Applica-
tions). https://zenodo.org/records/3888300# . XvCPQUUzalk.

[Li et al., 2020] Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. (2020). Federated learning: Chal-
lenges, methods, and future directions. IEEE Signal Processing Magazine, 37(3):50-60.

[Naili, 2023] Naili, S. I. (2023). Flood Amateur Video for Semantic Segmentation Dataset. https:
//data.mendeley.com/datasets/3kzr8mt8s2/4.

[Neuhold et al., 2017] Neuhold, G., Ollmann, T., Rota Bulo, S., and Kontschieder, P. (2017). The
mapillary vistas dataset for semantic understanding of street scenes. In Proceedings of the IEEE
international conference on computer vision, pages 4990-4999.

[Nguyen and Weller, 2019] Nguyen, A. and Weller, T. (2019). Fairnets search-a prototype search
service to find neural networks. In SEMANTICS Postersé$Demos.

[Olaru et al., 2023] Olaru, A., Nicolae, G., and Florea, A. M. (2023). The entity-operation model for
practical multi-entity deployment. In Ciortea, A., Dastani, M., and Luo, J., editors, Engineering
Multi-Agent Systems, pages 253-270, Cham. Springer Nature Switzerland.

[Olaru and Pricope, 2023] Olaru, A. and Pricope, M. (2023). Multi-modal decentralized interaction
in multi-entity systems. Sensors, 23(6):3139.

[Olaru et al., 2019] Olaru, A., Sorici, A., and Florea, A. M. (2019). A flexible and lightweight agent
deployment architecture. In 2019 22nd International Conference on Control Systems and Computer
Science (CSCS), Bucharest, Romania, 28-30 May 2019, pages 251-258. IEEE.

23

https://www.kaggle.com/code/carloscorredor24/water-detection/notebook
https://www.kaggle.com/code/carloscorredor24/water-detection/notebook
https://crisisnlp.qcri.org/crisismmd.html
https://crisisnlp.qcri.org/crisismmd.html
https://www.kaggle.com/datasets/faizalkarim/flood-area-segmentation
https://www.kaggle.com/datasets/faizalkarim/flood-area-segmentation
https://github.com/santurini/aerial-view-segmentation
https://github.com/santurini/aerial-view-segmentation
https://github.com/sahilkhose/FloodNet
https://zenodo.org/records/3888300#.XvCPQUUzaUk
https://data.mendeley.com/datasets/3kzr8mt8s2/4
https://data.mendeley.com/datasets/3kzr8mt8s2/4

[Ros et al., 2016] Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and Lopez, A. M. (2016). The
synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3234-3243.

[Ruthvik, Sai Mondreti , 2024] Ruthvik, Sai Mondreti (2024). Semantic Segmentation. https://
github.com/ruthviksai/SemanticSegmentation.

[Shahane, 2021] Shahane, S. (2021). Roadway flooding image dataset. https://www.kaggle.com/
datasets/saurabhshahane/roadway-flooding-image-dataset/data.

[Shen et al., 2024] Shen, W., Li, C., Chen, H., Yan, M., Quan, X., Chen, H., Zhang, J., and Huang,
F. (2024). Small llms are weak tool learners: A multi-LLM agent. arXiv preprint arXiv:2401.07324.

[Ullah, 2023] Ullah, M. (2023). Aerial Image Semantic Segmentation. https://github.com/
bulentsiyah/semantic-drone-dataset.

[Wang et al., 2019] Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., and Chen, M. (2019). In-edge
ai: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE
Network, 33(5):156-165.

[Wojciechowski, 2001] Wojciechowski, P. T. (2001). Algorithms for location-independent communica-
tion between mobile agents. In Proc. of AISB’01 Symposium on Software Mobility and Adaptive
Behaviour.

[Xiao et al., 2010] Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A. (2010). Sun database:
Large-scale scene recognition from abbey to zoo. In 2010 IEEE computer society conference on
computer vision and pattern recognition, pages 3485-3492. IEEE.

[xViewOrg , 2018] xViewOrg (2018). xView 2018 Detection Challenge. http://xviewdataset.org/.

[Yu et al., 2020] Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., and Darrell,
T. (2020). Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pages 2636-2645.

[Yurtkulu et al., 2019] Yurtkulu, S. C., Sahin, Y. H., and Unal, G. (2019). Semantic segmentation with
extended deeplabv3 architecture. In 2019 27th Signal Processing and Communications Applications
Conference (SIU), pages 1-4. IEEE.

[Zhou et al., 2017] Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., and Torralba, A. (2017).
Scene parsing through ade20k dataset. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 633—641.

24

https://github.com/ruthviksai/SemanticSegmentation
https://github.com/ruthviksai/SemanticSegmentation
https://www.kaggle.com/datasets/saurabhshahane/roadway-flooding-image-dataset/data
https://www.kaggle.com/datasets/saurabhshahane/roadway-flooding-image-dataset/data
https://github.com/bulentsiyah/semantic-drone-dataset
https://github.com/bulentsiyah/semantic-drone-dataset
http://xviewdataset.org/

A Competency questions for ML models

e General Dataset Information Questions
1. What is the dataset name?
2. What is the dataset access URL?
3. What is the dataset human readable description?
4. When was the dataset created?
5. When was the dataset last updated?
e General Domain description Questions
The domain is defined as an intended principal / high-level usage of the dataset (e.g. Autonomous
Driving, Search and Rescue, Activity Recognition).
A Task is defined as a learnable objective that can be addressed using the dataset (e.g. Semantic
Segmentation of drivable road and driving obstacles, Semantic Segmentation of terrain types)
1. What is the domain of the dataset?
2. What tasks can be learned from the dataset?
e Semantic Segmentation Task Questions
1. What type (e.g. image, 3D point-cloud) of input does the segmentation task have?
2. What is the size (as tensor dimensions) of the segmentation task input?
3. How many target classes does the segmentation task have? (e.g. drivable lane, opposite
lane, traffic participant, pedestrian, other)
4. What are the target classes for the segmentation task?
e Semantic Segmentation Task for Autonomous Driving
Scene Categories define a highlevel classification of the driving scene (e.g. residential house-only,
residential block-only, residential mixed, urban high-rise, single lane highway, multi lane highway,
country side, mountain road)
1. What are the illumination conditions for driving scenes present in the dataset? What is the
percent-wise coverage of each illumination condition in the dataset?
2. What are the weather conditions for driving scenes present in the dataset? What is the
percent-wise coverage of each weather condition in the dataset?
3. What are the scene categories present in the dataset? What is the percent-wise coverage of
each scene category in the dataset?
How many lanes per driving direction do roads in the dataset have?
What is the min / max / avg number of traffic participant obstacles per frame?
What is the min / max / avg number of pedestrians per frame?
. What is the min / max / avg number of cross intersections per frame?
. What is the min / max / avg number of T-shaped intersection per frame?
. What percentage of images in the dataset contain road section without any lane markings?
. What percentage of images in the dataset contain parking lot scenes?
. What is the min / max / avg ratio of the drivable road segmentation mask with respect to
the input image resolution?
. What is the min / max / avg ratio of the perdestrian segmentation mask with respect to
the input image resolution?
. What is the min / max / avg ratio of the traffic participant segmentation mask with respect
to the input image resolution?

— — =
N~ O © 00O U

—_
w

25

B Elements of the AI Folk Ontology

Table 4: Elements in the AI Folk ontology (continued in Table 5)
Problem description

Model description (A)

1.

2.
3.

Category

(a) Classification
(b) Regression

(¢) Segmentation
(d) ObjectDetection
(e) Clustering

(f) Adversarial
(g) Discrimination
(h) Generation

(i) Prediction

(j) Estimation
(k) Reconstruction
EvaluationMetric
DataModality

Dataset description

ANNArchitecture:
1. PretrainedNetwork
2. InputSize

S

Name

URL

CreationTime

Domain

Application/ possible tasks
Number of images

Input type (video, image, lidar etc)
Number of classes (if applicable)
Light conditions

Weather conditions

. Area recorded

. Number of traffic participants
. Number of cars

. Number of pedestrians

. Keywords

. Citation

. Size

3. OutputSize

4. Layer

(a) ConvolutionLayer

i.

ii.
iii.
iv.
V.
vi.
vii.
viil.

Convld

Conv2d

Conv3d
ConvTransposeld
ConvTranspose2d
ConvTranspose3d
Unfold

Fold

(b) Poolinglayer

i.
ii.
iii.
iv.
V.
vi.
vii.
viii.
ix.
X.
Xi.
Xii.

MaxPoolld
MaxPool2d
MaxPool3d
MaxUnpoolld
MaxUnpool2d
MaxUnpool3d
AvgPoolld
AvgPool2d
AvgPool3d
AdaptiveMaxPoolld
AdaptiveMaxPool2d
AdaptiveMaxPool3d

(c) PaddingLayer

i.
ii.
iii.
iv.
V.
vi.
vii.
viii.
ix.

26

ReflectionPad1d
ReflectionPad2d
ReflectionPad3d
ReplicationPad1ld
ReplicationPad2d
ReplicationPad3d
ZeroPad2d
ConstantPadld
ConstantPad2d
ConstantPad3d

Table 5: Elements in the AI Folk

ontology (continued from Table 4)

Requirements Model description (B)
1. Operating System (d). NormalizationLayer
2. Language (i) BatchNormld
3. Has Installation Script (to be executed (ii) BatchNorm2d
instantly) (iii) BatchNorm3d
4. Dependent libraries (iv) GroupNorm
5. MLFramework (v) InstanceNormld
6. ModelSize (vi) InstanceNorm2d
7. GPU (vii) InstanceNorm3d
8. RAM size (e). RecurrentLayer
9. Memory size (i) RNN
(ii) LSTM
(ili) GRU
(iv) RNNCell
(v) LSTMCell

(vi) GRUCell
(f). TransformerLayer
(i) Transformer
(ii) TransformerEncoder
(iii) TransformerDecoder

(iv) TransformerEncoderLayer

(g). LinearLayer
(i) Identity
(ii) Linear
(iii) Bilinear
(h). DropoutLayer
(i) Dropout
(ii) Dropoutld
(iii) Dropout2d
(iv) Dropout3d
. SparseLayer
(i) Embedding
(ii) EmbeddingBag
j). VisionLayer
(i) PixelShuffle
(ii) PixelUnshuffle
(iii) Upsample
)
)

—~
—-
~

—
(-

i
(iv) UpsamplingNearest2d
(v) UpsamplingBilinear2d

27

C Python server available operations

e /add-model — The add_model service is a Flask route defined in the ML server. This service
is designed to handle HTTP POST requests for adding machine learning models to the server.
Here’s a breakdown of how it works:

1. Request Parameters
The service expects the following parameters to be included in the POST request form data:
— model name: The name of the model.
— model_file: The path to the model file.
— model_config: A JSON-formatted string containing additional configuration for the
model.
2. Functionality
Upon receiving a request, the service extracts the relevant information from the form data.
It then attempts to load the model using the get_model function, which utilizes PyTorch
to load the model from the specified file path. The loaded model is associated with its con-
figuration, including the model name, file path, CUDA availability, task type, and dataset
information. The loaded model is added to a global dictionary models, where model names
serve as keys.
3. Response
The service returns a JSON response:
— If the model is successfully added, it returns a success message indicating that the model
has been added.
— If there is an error (e.g., missing model name or model file), it returns an error message
along with a 400 Bad Request status.
4. Example POST Request Data

{
"model_name": "example_model",
"model_file": "/path/to/example_model.pth",
"model_config": "{\"cuda\": true, \"task\": \"classification\",
\"dataset\": \"mnist\"}"
}
5. Example Success Response
{
"message": "Model ’example_model’ has been successfully added."
}

This service facilitates the dynamic addition of machine learning models to the server,
allowing users to extend the set of available models without modifying the code.
e /add_dataset
1. Request Parameters
The service expects the following parameters to be included in the POST request form data:
— dataset_name: The name of the dataset.
— dataset_classes: A JSON-formatted string containing the class names for the dataset.
2. Functionality
Upon receiving a request, the service extracts the relevant information from the form data.
It then checks if the dataset already exists in the global datasets dictionary. If it does not
exist, the service adds the dataset with its class names to datasets.
3. Response
The service returns a JSON response:
— If the dataset is successfully added, it returns a success message indicating that the
dataset has been added.
— If there is an error (e.g., the dataset already exists or missing dataset name or class
names), it returns an error message along with a 404 Not Found status.

28

4. Example POST Request Data

{
"dataset_name": "example_dataset",
"dataset_classes": "[\"class1\", \"class2\", \"class3\"]"
}
5. Example Success Response
{
"message": "Dataset ’example_dataset’ has been successfully added."
}

This service facilitates the dynamic addition of datasets to the server, allowing users to
extend the set of available datasets without modifying the code.
e /predict
1. Request Parameters
The service expects the following parameters to be included in the POST request form data:
— model name: The name of the machine learning model.
— input_data: Base64-encoded input data for prediction.
2. Functionality
Upon receiving a request, the service extracts the relevant information from the form data.
It checks if the specified model exists in the global models dictionary. If the model exists,
it performs the following steps:
— Decodes the Base64-encoded input data.
— Utilizes the PyTorch model and associated transformations to make a prediction.
— Constructs a response containing the prediction results and additional information like
class names, task type, and dataset.
3. Response
The service returns a JSON response:
— If the model exists and the prediction is successful, it returns a response containing the
prediction results and related information.
— If there is an error (e.g., the specified model does not exist), it returns an error message
along with a 404 Not Found status.
4. Example POST Request Data

{
"model_name": "example_model",
"input_data": "base64_encoded_data"

}

5. Example Success Response

{
"prediction": [0.85, 0.15, 0.0],
"class_names": ["classl", "class2", "class3"],
"task": "classification",
"dataset": "example_dataset"

}

This service facilitates making predictions using a specified machine learning model, pro-
viding flexibility for different models and tasks.
e /get_models

1. Functionality
Upon receiving a request, the service reads the model configuration file specified by the
constant MODEL_CONFIG_FILE. It then constructs a response containing information about
available models by iterating through the models defined in the configuration.

2. Response
The service returns a JSON response:

— If the model configuration file is successfully loaded, it returns a response containing a
dictionary of available models and their respective configurations.

29

3. Example Success Response

{
"models": {
"example_modell": {
"name": "example_modell",
"path": "/path/to/example_modell.pth",
"cuda": true,
"task": "classification",
"dataset": "mnist"
1,
"example_model2": {
"name": "example_model2",
"path": "/path/to/example_model2.pth",
"cuda": false,
"task": "regression",
"dataset": "cifar10"
1,
}
}

This service provides information about the available machine learning models based on the
configuration file.

e /export_model

1. Request Parameters
The service expects the following parameters to be included in the POST request form data:
— model_name: The name of the machine learning model to export.
— export_directory_path: The path to the directory where the model will be exported.

2. Functionality

Upon receiving a request, the service checks if the specified model exists in the global models
dictionary. If the model exists, it performs the following steps:
— Reads the model configuration file specified by the constant MODEL_CONFIG_FILE.
— Identifies the configuration for the specified model.
— Creates a new configuration file containing only the information for the specified model.
— Saves the new configuration file in the export directory.
— Copies the model file to the export directory.
3. Response The service returns a JSON response:
— If the model exists and the export is successful, it returns a response containing a
success message and the destination directory.
— If there is an error (e.g., the specified model does not exist), it returns an error message
along with a 404 Not Found status.
4. Example POST Request Data

{
"model_name": "example_model",
"export_directory_path": "/path/to/export_directory"

}

5. Example Success Response

{
"message": "Model ’example_model’ has been successfully exported.",
"destination": "/path/to/export_directory"

}

This service facilitates exporting a machine learning model along with its configuration to
a specified directory.

30

	Introduction
	AI Folk Ontology
	AI Folk Interaction Protocol
	Names and Identifiers
	Protocol Specification

	AI Folk Deployment
	Entities
	Evaluation of Machine Learning Models

	The AI Folk Methodology
	Autonomous Driving Scenario
	Datasets and Models
	AI Folk Ontology Instantiation
	Experiments and Results
	Enhanced experiment design

	Disaster Response Scenario
	Datasets
	Models
	Individual Results

	Conclusion
	Project Achievements
	Project Impact
	Future Work

	Competency questions for ML models
	Elements of the AI Folk Ontology
	Python server available operations

